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Expressions for thermal quantities such as the critical field, entropy, and specific heat are derived for strong 
coupling superconductors without making a quasiparticle approximation for electron motions. The contri
butions from the ion motions are also taken into account semiphenomenologically. Nambu's Green's-function 
formalism at finite temperature is used as well as a relation, derived by Chester, between the differences of the 
thermal averages of the total Hamiltonian and the ion kinetic energy between the normal and the super
conducting phases. Assuming the simple isotope effect, where the transition temperature is proportional to 
the inverse square root of the ionic mass, the phase transition is shown to be of the second order. The thermal 
quantities are given in terms of a single function of the temperature and its derivatives, which can be ob
tained from the energy-gap function and the renormalization factor of the electron Green's function. These 
expressions lead to the BCS results in the appropriate limit. A new expression for the jump in specific heat is 
also derived. For strong coupling superconductors it is likely to give better agreement with experiments than 
the BCS expression. Present theory does not apply to superconductors with isotope effect not simple as 
above. A possible reason is discussed. 

I. INTRODUCTION 

EXPERIMENTAL results for superconductors with 
strong electron-phonon coupling, such as Pb and 

Hg, exhibit some deviations from the predictions of the 
BCS theory.1 Schrieffer, Scalapino, and Wilkins2 have 
shown that the experimental tunneling I-V character
istics for such superconductors can be predicted if the 
retardation of the effective electron interactions is 
correctly taken into account. We expect the same effect 
to be important in explaining the thermodynamic 
anomalies of the strong coupling superconductors. For 
instance, the ratio of the energy gap at zero temperature 
2A0 to KTC, where K is the Boltzmann constant and Tc is 
the transition temperature, has not been satisfactorily 
explained. Swihart3'4 showed that this ratio is always 
less than the observed values, 4.1 for Pb and 4.6 for 
Hg, using a variety of nonretarded interactions. The 
retardation effect in interactions, especially, the accom
panying damping of excitations is likely to explain this 
discrepancy.5 Since the damping decreases the effective 
pairing interaction strength, the transition temperature 
as well as the energy gap at zero temperature are re
duced. The former is reduced much more than the 
latter, because the damping rate is greater at higher 
temperatures. Thereby the ratio 2A0/KTC will increase. 
Actually, tentative calculations6 for Pb including the 
effects of damping to the renormalization factor of the 
Green's function but neglecting the nonresonant proc
esses, which do not conserve the energy at the inter-
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mediate states, resulted in even a larger ratio than the 
experimentally observed value. It should be possible 
to obtain the experimental ratio by a complete calcula
tion, since the nonresonant effect, discarded in the above 
calculation, had been found to decrease the ratio.5«6a 

The phonon-limited electronic thermal conductivity 
is another problem. Tewordt7 concluded that the experi
mental temperature dependence of the ratio of the 
superconducting to normal thermal conductivity for Pb 
and Hg cannot be reproduced completely within the 
scope of the BCS model and the Boltzmann-equation 
approach. Ambegaokar and Tewordt8 have derived a 
new expression for the above ratio using Kubo's formula9 

for the thermal conductivity and the method of thermo
dynamic Green's functions, taking into account retarda
tion effects. Although full numerical results are not 
available yet, their result appears to improve agreement 
with experiment than the earlier results. 

The temperature dependence of the critical field of 
Pb and Hg shows a deviation from the BCS theory. It 
deviates in the positive direction from a parabola given 
by the Gorter-Casimir two-fluid model, while the BCS 
theory gives a negative deviation. This problem has 
something in common with the above-mentioned dis
crepancies. It was shown that the positive deviation can 
be obtained even within the scope of the BCS model if 
the experimental value is used for the ratio of the energy 
gap at zero temperature to the transition temperature.10 

Therefore, it is desirable to calculate the temperature 
dependence of the critical field within the framework 
of the retarded interaction theory. 

6a Note added in proof. Recently, D. J. Scalapino, J. C. Swihart, 
and the present author have solved the complete energy-gap 
equation at finite temperatures and obtained the value of 2Ao/KTC 
close to the experimental one for Pb and Hg. 
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Shiffman, Cochran, and Garber11 have made a precise 
measurement of the temperature dependence of the 
specific heat of Pb and Hg near the transition tempera
ture. The jump in the specific heat of Pb at the phase 
transition was observed to be AC=57.5zb0.6 mj-mole""1 

deg -1 . This value is larger by the factor 1.6 than the 
BCS result, but is in agreement with the value obtained 
by Decker, Mapother, and Shaw12 from an analysis of 
the temperature dependence of the critical field. Using 
the expression for AC derived by Swihart3 with non-
retarded interactions, they concluded that the energy 
gap function must increase with energy for small 
energies. 

The purpose of this paper is to derive new expressions 
for the critical field, the specific heat, and its jump at 
TC} taking into account the retardation effects correctly. 
These quantities can be expressed in terms of the elec
tron and phonon Green's functions in Gorkov-Nambu 
formalism.13-16 I t is possible to calculate the electron 
Green's function explicitly. However, the calculations of 
the phonon Green's function have some complications. 
Therefore it is desirable to derive the relations for the 
above quantities involving just the electron Green's func
tion. This can be done if we take a semiphenomenologi-
cal approach, using a relation derived by Chester.17 I t 
provides a way of expressing the difference of the 
thermal averages of the ionic kinetic energy in the 
normal and the superconducting phases in terms of the 
difference of the total energy in the two phases and the 
critical field. Chester's relation is based upon the fact 
that the ratio of the critical field Hc to its value at the 
zero temperature H0 is given by a function of reduced 
temperature t=T/Tc, where T is the temperature, 
which is common to all isotopes of any one supercon
ductor. The dependences on the isotopic mass M are 
assumed to be HQ^M"" and Tc<^M~a\ Assuming a 
simple isotope effect, af = J, it turns out that the critical 
field, the difference of the entropy between the two 
phases, and the specific heat are all given in terms of a 
single function of the temperature and its derivatives. 
This function can be written in terms of the energy-gap 
function and the renormalization factor of the electron 
Green's function. Our expressions reduce to the BCS 
results1 if the energy-gap function is real and constant. 
Calculating the difference of the thermal average of the 
total energy between the two phases, one finds that the 

11 C. A. Shiffman, J. F. Cochran, and M. Garber, Phys. Chem* 
Solids 24, 1369 (1963). 

12 D. L. Decker, D. E. Mapother, and R. W. Shaw, Phys. Rev. 
112, 1888 (1958). 

13 L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958) 
[English transl.: Soviet Phys.—JETP 7, 505 (1958)]. 

14 Y. Nambu, Phys. Rev. 117, 648 (1960). 
15 G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960) 

[English transl.: Soviet Phys.—JETP 11, 696 (I960)]. 
16 L. Tewordt, Phys. Rev. 128, 12 (1962). 
17 G. V. Chester, Phys. Rev. 103, 1693 (1956). The following 

procedure was used by Scalapino and Schrieffer to calculate the 
condensation energy of the superconducting phase at zero tem
perature (private communication). 

ionic kinetic-energy difference gives rise to a contribu
tion which is equal to the total energy difference itself 
at T~ Tc, thereby making it not obvious that the phase 
transition is not of the first order. The transition is 
shown to be not of the first order, making use of the 
defining equation for the renormalization factor of the 
Green's function. By means of similar discussions, the 
expression for the jump in specific heat AC is expressed 
in terms of the temperature derivative of the square of 
the energy-gap function. When the damping is neglected 
and the electron-phonon interaction is weak, our result 
reduces to that given by Swihart.3 In the general case, 
it is expected to be larger than the BCS result and 
should, therefore, be in better agreement with 
experiment. 

In Sec. I I , the critical field, the difference of the total 
energy between the two phases, the entropy difference, 
and the specific heat are given in terms of a function 
I(/3), with P=1/KT, which can be obtained from the 
electron Green's function. In Sec. I l l , the function I($) 
is transformed to a simple integral containing the 
energy-gap function and the renormalization factor. The 
phase transition is proved to be not of the first order and 
AC is rewritten in a simpler form. In Sec. IV, the ex
pressions for the thermal quantities are shown to involve 
the BCS and Swihart results as special cases. The cor
rections to the BCS AC are examined and are likely to 
give a better agreement with experiments. Finally, 
validity of Chester's relation is discussed in Sec. V. 
Then a difficulty in applying the present theory to 
superconductors with more general isotope effect, a 9^ J, 
is pointed out. A possible origin of this difficulty is 
discussed. 

II. THERMAL QUANTITIES AND CHESTER'S 
RELATIONS 

In this section, we shall first write the thermal average 
of the total Hamiltonian in terms of the Green's func
tions. The phonon Green's function is eliminated from 
the obtained relation, making use of Chester's relations. 
I t gives expressions for the free-energy difference be
tween the two phases, the critical field, entropy differ
ence, and the specific-heat difference. 

In terms of the second quantized (bare) operators, 
cva for the electron with quasimomentum p and spin 
cr, aa\ for the phonon with quasimomentum q and 
polarization X, the Hamiltonian of the electron-ion 
system takes the form 

K ^H-nN=Ko+Hi+Ht+Eo, 

^o = E *9UPT&-P+1 E {IlQX*ILqx+coQX*QqX*QqX} , 
P Q^ 

Vq-K,\ 
Si= E ——Qq\^p+q-Ktn^fpj 

H2 = J E V(khk2MM):Vkinfrk&kfTzVkt: . 
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Here we have subtracted ixNy so that ep is the Bloch 
energy measured relative to the chemical potential /x. 
N is the total number of electrons and KQ is the Hamil-
tonian of the system without interactions. We used 
Nambu's matrix notation,14 

^ ^ ( C p t V - p l ) , * : 
\C-Pl*/ 

and T3 is the third component of the Pauli spin matrix. 
The phonon field operators are given by 

n ^ = i(coQx/2)1/2(agx*~-a_gX), 

e ,x-(2co,x)-1 / 2(a,x+a„ ex*) J 

where cogx is the bare phonon frequency. H± is the elec-
tron-phonon interaction Hamiltonian, vq^K,\ is the 
coupling matrix element which is assumed for simplicity 
to depend only on the electron-momentum transfer 
q—K and the polarization of phonon X.18 K is any 
reciprocal lattice vector, and 0 the normalization 
volume. H2 represents the Coulomb interactions among 
the electrons. V(ki,k2,kz,k±) is the matrix element of the 
Coulomb interaction with the Bloch functions ^fc(r), 

v(khk2,h,h)= Ukl*(r)fkWy ^k*(f)$kSr)drdr', 

which vanishes unless k±-{-k2—ks—k^ is equal to any 
reciprocal lattice vector K. The symbol: • • •: means the 
normal product with respect to ^1' and SI>. The term E 0 

involves the total numbers of the electrons with up spin 
and down spin as well as pure constants. Since these 
have nothing to do with the phase transition, we discard 
this term hereafter. I t is worth remarking here that the 
kinetic energy of the ions 

#M = L( l / 2 J J f ) iY , 
i 

can be rewritten as 

^jf=iEnflx*nflx. 
(2.1) 

The operators at reciprocal temperature r are defined 
by 

yp(T) = eKT*Pe-Kr, 

with the similar relations for ^ P
t ( r ) , II^xM and Qq\(r). 

The equations of motion take the forms 

d^p vQ_K,\ 

dr QK\ y/Q, 

~ E H M i M ) : ^ , ^ ^ : , (2.2) 

dQq\/dT=—iU^q\J 

dIL-q\ v^q-K,\ (2.3) 
= uaa\

2Qq\+i E ^rp_Q_JK
tr3^

rp. 
dr PK y ^ 

The thermodynamical Green's functions are defined by 

G(p,ThT2) = -TrUe^x>T(?p(Td*J(T2)), 

for electrons and phonons, respectively, where Tr means 
the thermodynamic trace operation and 

0=1 AT1. 

The operator U is given by 

U=^l+R+R+ 

in terms of an operator R+ which transforms a given 
state in an iV-particle system into the corresponding 
state in the A^+2-particle system19,20; thus for the 
ground states 

R*-\0,N)'=\0,N+2). 

and for the one-particle states 

R+\k,N)=\k,N+2), 

while 

R\Q,N+2)=\Q,N),etc. 

The symbol T means the ordering operator with respect 
to n and r2. Due to the Umklapp processes, the quasi-
momentum of one-electron state is not conserved. The 
electron Green's function becomes a matrix with respect 
to momentum suffices, too. Here we have defined the 
diagonal components which are relevant to the following 
discussions. 

Because of the translational invariance and the 
periodicity in n and r2, the Green's functions can be 
expanded in the Fourier series21 

1 00 

G(p,rhr2) = - E e x p E - i f i n f n - r a ) ^ ^ , ^ ) , (2.4) 

1 00 

D\(q,Ti,T2) = - E exp[— ivn(ri— r2)~]D\(q,ivn), (2.5) 

where 

E „ = ( 2 » + l ) i r / 0 , 

vn=2mr/fi, 

18 J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 
1960), Chap. 5. 

19 L. P. Kadanoff and P. C. Martin, Phys. Rev. 124, 670 (1961). 
20 J. R. Schrieffer, Lecture at the University of Pennsylvania, 

1962 (unpublished). 
21 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 
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n being any integer. The inverse relations for (2.4) and (Ko)^TrePin°~~K)Ko 
(2.5) are ^ 

= -Etr{G(fc*E»)€pTa}e'*»<H-
1 f13 C? (3 vn 

G(p,iEn) = - / / dT1dr2expliEn(ri—T2)2G(p}Thr2), 
P +~~ E {(vn2-ugX*yDx(q,ivn) + l}e^y (2.6) 

2(3 ng\ 
1 [P [V P 

D\(q,ivn) = - / / dT1dT2exp[ivn(Ti-T2)~]D\(qJThT2). where the equation of motion for QqX, (2.3), is used. 
" ° ° Here, tr is the trace operation in the sense of Nambu's 

matrix notation. 
The thermal average of KQ can be written in terms of Using the equation for \frp, (2.2), one can get the equa-

the Green's functions. tion of motion for the Green's function, 

dG(p,Tl,T2) f Vq-K,\ 
. = - 5 ( T 1 - r a ) - l - 6 p r 8 G ( # , r 1 , r 2 ) + T r ^ C ^ ^ r £ - ^ ( r i M ^ v W n ) 

d r i [QK\ -y/Q 

+ E ^ ( ^ i , * 2 ^ ) : r 3 ^ A a ( r i ) ^ 1
t ( r i ) r 3 ^ 2 ( r 1 ) : , ^ p t ( r 2 ) 

which is t ransformed to 
' 1 ft* ft* 

-iEnG(p,iEn)= -l~eprzG(p)iEn)+~ I / ^ r s e x p f t E ^ n - r a ) ] TrEte* 0 *-** 
/5 Jo Jo 

X r l — f e ( r i ) ^ - ^ i ) + Z F ( # , M 2 , * 8 ) : r 8 ^ * , ( r 1 ) ^ J f c l t ( r i ) r 8 ^ 2 ( r i ) : , ^ p t ( r 2 ) j . (2 .7) 
UiiCX \ / 0 &1&2&3 J 

The diagonal components of the electron Green's function with respect to the quasimomentum are known 
to satisfy the Dyson equation14'15'19-20,22 

l/G(p,iEn) = Zl/Go(p,iEn)l-2(p,iEn), (2.8) 

if 2(p,iEn) is defined as the contributions of all distinct self-energy diagrams diagonal with respect to the quasi
momentum p and which cannot be separated into two parts by breaking a single particle line carrying the label 
pP Go is the Green's function for a noninteracting system 

GoipjiEn)"1 = iEn — €PTZ . 

Equation (2.7) gives an expression for the self-energy part, 

1 rf> ft 
2(p,iEn)G(p,iEn) = — / / dndr* e x p p £ „ ( n - r2)] TrUeK°^*> 

P Jo Jo 

XT j £ ^ Z ^ e a x ( r i ) r 3 ^ _ s + i c ( r 1 ) + £ F ^ A W ^ f A i W ^ W r A i r , ) : , ^ h ) ! . 

Transforming the expression back to the reciprocal temperature variable, one finally gets 

1 
- £ eiE"°+ tr(?(p,iEn)G{p,iEn)) 

= Tre«o»-jc> £ j £ ! f Z f ^ 9 X * 3 t T 3 ^ _ 3 + x + 2 7(^,Ai^> g):*,V,* i l*t1+T8* i l : \ = (H1+2Hi). (2.9) 

By similar discussions, the equation for D\ turns out to be 

1 rP [V 
~Vn2Di(q,ivn) = l+uq\

2Dx{qMn) / / ^r iJT2exp[^(r1~r2)]Tre^0o-^ 
BJo Jo 

\PK A / O / 

22 P. Nozieres, Theory of Interacting Fermi Systems (W. A. Benjamin, Inc., New York, 1964), Chap. 4. 
23 J. R. Schrieffer, Lecture at Argonne National Laboratory, 1962 (unpublished). 
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The self-energy part of the phonons IIx is denned by 

1/Dx(q,ivn) = [l/Z)ox(g>»)]- H\(q,ivn), (2.10) 
where 

Doxiq^n)-1^ - (vn
2+a>qtf. (2.11) 

Then, one finds 

nx(?>n)Z)xfe>») = — / / dr1dr2 erp[w„(Ti- r2)] T r ^ o - i O j £ ^2,-3_K+(ri)r3^P(r1) , Q3X*(T2) ) , 
/3Jo Jo W \/Q / 

and finally 

-E^^nx(g,fr»)Z>x(g>»)=--Tr^cO(r-^) £ ! l ! l5 l x
e_ g X^ p_ g_ x tT 3^= =_( iy 1 ) 4 ( 2 . i2) 

The average of K0, (2.6), and that of interaction energies, (2.9) and (2.12), give the thermal average of the 
total Hamiltonian, 

<iO=(l//3)£ tr{G(p9iEn)e9TZ+i E(p,iEn)G(p3iEn)}eiE^ 
pn 

+ ( 1 / 2 « E {(vn2-u^)Di(q,ivn)+l-ni(q,iVn)Dx(q,iVn)}ei>"<>+. 

The second term on the right-hand side is twice the average ionic kinetic energy, since it can be written as 

(1/2/3)£ {(vn2-o>qX*)Dx(q)ivn)+1 -Mq^n)D x(q } iu n)}e^^ 
nqk 

= (1/20)2: \2vH*Di(q,ivn)+2+ —-Dx(q,iVa)-l-Ilx(q,ipn)Dx(q,wn))e'-'»<>+ 

= (i//s)E {^2^x(?>n)+i}e''»0+=E(n8x*n9x)=2<irM)) 
ngX gX 

where we have used the expression for DB\, (2.11), the where Hc is the critical field, one obtains 
equation for D\, (2.10), and the expression for KM, 
(2.1). Thus (K) takes the form = G ^ f _ Tf^\ ,^f] 

(K)=(W)i:tr{G(,p,iEn)ePr3 ^ ^dT/a,M 2 J ' 

OHcr aF.-l 
+IZ(A^»)G(i>,̂ K)}^»(H-+2(irM). (2.13) ^ ^ " " l ^ L ^ l i f X a . 

Now, we will use the Chester's relation17 in order to _, „ . _,, , „ 
eliminate the ionic kinetic-energy term from (2.13). He f ° l o ™ ^ Chester we assume^ the experimentally 
pointed out that the quantities (H) and (KM) can be established fact that Hc can be written as 
given in terms of the free energy F as Hc=H0k(t), 

(H)= - T*Zd(F/T)/dT~]a,M, (2.14) where Ho is the critical field at absolute zero, h{t) is a 

(KM)= -MldF/dM^r 0. (2.15) f " n c t i o n of ' = TIT° ^ h i d l i s id^tical for all the isotopes 
of any one superconductor satisfying h(0) = l, /z(l) = 0. 

If the difference in any quantity X between the normal We shall first assume a simple isotope effect 
and superconducting states is denoted by AX, __ __ , _ _r , . , 

F & J H0ozM-a and TcccM~a , a ' = J . 
AX~X —X 

*' One will find a difficulty in more general cases, a!9^\y 

then Eqs. (2.14) and (2.15) give which will be discussed in Sec. V. Under the above 

A/n\— — T^rf)(AF/T)/c)Tl approximation, Eqs. (2.17) turn out to be 

A(KM)=-M[_dAF/dM2T^ ' A<ff> = Affoft[A-2tfa (2.18) 

Substituting the expression , x m/ "- —*' 
AF=Q#c

2/&r, (2.16) AU0=QH0
2/Sir, h'=dh/dt. 



A 1486 Y A S U S H I W A D A 

Substituting (2.18) into the equation which can be ob
tained by taking the difference of (K), (2.13), between 
the two phases and using A/z=0 (see Appendix A), one 
gets the critical field and the total energy difference as 

ttHc
2/8ir=AU0h

2(t)= [ l / ( 4 a - l ) ] t f (0)/(/3), 

h~2tti 
A(F> = - —NW(P) 

(4OJ~1)A 
N(Q) 

where 

N(0)I(fi) = -

4a-1 m-t-
dm 

dt . 

-( l / j8)AEtr{G(#, tE.) e pT, 
pn 

+hT,(p,iEn)G(p,iEn)}e**'t*, 

(2.19) 

(2.20) 

(2.21) 

and N(0) is the density of Bloch states of one spin 
orientation per unit energy at the Fermi surface. Equa
tion (2.19) is a direct generalization to finite tempera
tures of the calculation of condensation energy by 
Scalapino and Schrieffer.17 

From the expression for AF in terms of 1(0), (2.16), 
and (2.19), the entropy difference is found to be 

A5=- • a KN(0)/32 BI(fi) 

4 a - 1 dp 
(2.22) 

I t is now not obvious that the superconducting phase 
transition is of the second order. A(27), (2.20), which is 
the energy difference between the normal and the super
conducting phases is not manifestly zero at T= Tc, since 
it is not a priori clear that dl/dt vanishes at / = 1. This 
comes from the fact that the difference of the ion kinetic 
energy is one-half of that of the total energy at T~TC. 
This indicates the importance of ionic motions which 
are not present in the theories with nonretarded inter
actions. The illusory latent heat is 

A<27) 
N(0)(3C dl 

4 a - 1 d/3c 

(2.23) 

which must vanish in order to give the second-order 
transition. 

The specific-heat difference is given by 

AC(/) = 
dA(H) N(0)t d2I(0) 

dT ( 4 a - l ) r c dt2 

If we assume a second-order phase transition, 

dl/dpc=0, 

Eq. (2.24) gives the jump in specific heat, 

KN(0W d2I 

(2.24) 

AC = ACQ) 
4 a - 1 d/3c

2 
(2.25) 

III. SECOND-ORDER PHASE TRANSITION AND 
THE JUMP IN THE SPECIFIC HEAT 

In order to facilitate the numerical calculations, the 
function 1(0), (2.21), will be rewritten in terms of the 
energy-gap function and the renormalization factor of 
the Green's function. By virtue of the result, the phase 
transition will be shown to be not of the first order and 
the jump in specific heat will be given in a simpler form. 

According to Nambu14 '16 the electron self-energy part 
takes the form 

^(p,iEn) = ̂ v(iEn)iEn+Xv(iEn)TZ+^p(iEn)ru (3.1) 

where fp, Xp and <t>p are even functions of the complex 
variable iEn, and the T»'S are the Pauli's spin matrices. 
From the Dyson equation, (2.8), the electron Green's 
function is given by 

G(p,iEn) = 
zZp(z) + €p(z) T 3 + 4>v(z) T i 

z2Zp
2(z)~Ep

2(z) 
(3.2) 

z=iEn 

where 

Zp(iEn) = 1 — tp(iEn), 

€p(iEn) = €p-i-Xp(iEn), 

Ep2(iEn) = Zp
2(iEn)+<j>p

2(iEn) • 

Zp is the renormalization factor of the electron Green's 
function. 

Substituting (3.1) and (3.2) into the expression for 
1(0), (2.21), we obtain 

1 
N(p)I(p)=—-A£ 

Z2Zp(z)+€p€p(z) 

(3 vnZ
2Zp

2(z)-Ep
2(z) 

2wi J a-

dz 
- A E 

z2Zp{z)+ep
meP(z) 

.\+tf" P z*Zv*{z)-Ev*(sy 
(3.3) 

where c\ and c^ are the contours illustrated in Fig. 1. 
Making use of the facts that the electron Green's func
tion does not have any singularity on the first Rie-
mannian sheet except along the real axis, and Zp> Xp, 

z plane 

FIG. 1. The con
tours of integration 
in a complex z plane 
used in Eqs. (3.3) 
and (3.4). 
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and <j)p are even functions of z one can rewrite (3.3) as 

N(0)I(p) = ;AE ft 
2iri P J c 

z2Zp(z)+epep(z) Pz 
dz- tanh— 

z2Zp\z)-Ep
2(z) 2 

(3.4) 

where the contour c is given in Fig. 1. Each of Zp , <t>p 

and Xp satisfies a relation such as 

Z2>(co+ie)==Zp*(co--ie), (3.5) 

for real a> due to the analytical property of the Green's 
function. If we use the notations 

lim Zp(co+ie) = Zp(co) , 

lim Xp(oi-\-ie) = Xp(co) , 
«->o+ 

l im <j)P(a)+ie) = <l)p(a)), 

Eq. (3.4) takes the form 

1 r00 

N(0)I(p)= — ImJ^ I AoA 
7T P J Q 

X 
"co2Zp(co)+€p

2(co) —Xp(co)€p(co)~| /3co 
t a r m — (3.6) 

The Xp€p term in the numerator of (3.6) gives a negligible 
contribution as shown in Appendix B. The energy region 
co<coc, coc being a constant several times the Debye 
energy, gives the important contribution to co integral 
in (3.6), since the difference between the two phases is 
small at co>coc. Then the main contribution to the p 
integral comes from the region | ep\ <coc where the p de
pendence of Zp and <j>p are so small that we can replace 
them by their average values at the Fermi surface, Z 
and 0, respectively. The p integral is evaluated by 
changing the variable 

Z = N(0) dlp, 
P J 

and extending the lp integral from — oo to oo. I t gives 

7 0 8 ) = / &)Re ( 1 + Z t t ( « ) ) « - ; [co2-A2(co)]1/2 

-Zs(co)[co2~A2(co)]1/2 tanh- (3.7) 

By virtue of the equations satisfied by the three 
functions, one finds that the shift of Xp between the 
normal and superconducting phases is small enough to 
neglect (Appendix B) so that eps are the same for the 
two phases. Moreover, the main effects of Xp are the 
shifts in the chemical potential and the effective mass.24 

where Zn and Zs are the Z functions in the normal and 
superconducting phase, respectively. The energy-gap 
function is given by 

A(«) = $(co)/Z.(«). (S.S) 

The square root is defined by the condition 

Im{Zs(co)[co2~A2(co)]1/2}>0. 

We shall calculate dl/d(3c in order to show that the 
phase transition is of the second order, dl/dff takes 
the form, 

dm 
dp 

r rdzn dZ8 / co2 

- / da>Re\ co ( a > 2 - A 2 ) 1 / 2 - { 
Jo L dp dp \2(co2-A2)3 /2 2(co2-A2)3/2 2(co2-A2)1 /2/ 

\dA 2 ' 

(1+Zn)a>-

which gives 

+ / dco Re 
Jo L (co2-A2)1/2 

dl r» V/dZn dZ8\ l-ZndA2-] 
— = / dec Re co— ta: 
dpc Jo l\dpc dp J 2co dp J 

tanh-

-Zs(co2-A2)1/2 
co/2 

cosh2(iSco/2) 
, (3.9) 

(3.10) 

Now we shall show the expression (3.10) which gives the illusory latent heat (2.23) actually vanishes. Due to 
the analytical property (3.5) and the evenness of Z and A, (3.10) can be rewritten 

_i r r/dzn dzs\ i-zndA2-i 
2J_00 Wdpc dpj 2co dB J 

di i r 

dp, 

l-ZndA2-) Pace 
t a n h — 

2co dPc-i 2 
(3.11) 

We can close the contour of the integration with a large semicircle in the upper co plane along which the integral 
will turn out to vanish. In Appendix C, dA2/dpc is proved to be analytic in the upper half-plane as well as. dZjdpc 

J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins (private communication). 
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and dZs/dpc* Therefore dl/d(3c takes the form 

— — E ( )* . (3.12) 

On the other hand, the equation satisfied by Zs(co), (B5), gives the relation 

/dZn dZs\ r r00 <fe>' /cW(co')\ 
co = E da&*(caq)FxM M — • H(co,co',co^c). (3.13) 

\dPe dp J X J J0 2o/2 \ dpc I 

The relation derived in the Appendix D, 

r00 dco /dA2\ 
— R e ( — 1 = 0, (3.14) 

Jo co2 \dpj 

tells that the quantity (3.13) vanishes more rapidly than 1/co when |co| becomes large, thereby justifying the 
transformation from (3.11) to (3.12). 

Transforming the co' integral in (3.13) to that with a closed contour as in (3.11) we find 

r r diJ d A V ) 
= E do)gax2(o)q)Fx(o:q)^2 / lE(iEm>oof',co q,Pc) 

=iEm KJ ^>o7 - 0 0 4co , 2 dpc 

fdZn dZ8\ I _ f _ /-00 &/ dA2(co') 
E I 1*1 

wi 1 dA2(iEn) 
= — E J(iEn,iEn), (3.15) 

2(3cm>o(iEn)
2 dpc 

where n ^ ° 

J(iEm,iEn) = j : du^'MExMl^——,——-—————7 : +— : } . (3.16) 

x J {iEn-\-iEm-\-o)q iEn—iEm-{-a)q — iEn-{-iEm-{-o)q — iEn~iEm-jrO)q) 

On the other hand, using Eq. (B5) one obtains 

1 dA2(iEm) 
\-Zn dA2 

E w>0 2Z dfic 

r i dA2(iEm) r 
= E / ^S«X2(COQ)FX(COQ) E / doo"3(iEm,o>',uq,pc) 

z=iEm x J ™>o4( iE m ) 2 d/3c ./._«, 

Tri 1 dA2(iEm) 
= — E -J(iEmiEn). (3.17) 

2j3c™>o(iEm)2 dpc 
«>0 

Combining (3.12), (3.15), and (3.17), we get 
dl/dpc=0. (3.18) 

Thus the transition is shown to be not of the first order. I t is important to note that the above result (3.18) has been 
derived without recourse to the assumption about the isotope effect, particularly, the choice of the parameter a'. 

We will turn to the calculation of d2I/dpc
2 to find the jump in specific heat AC. d2I/dpc

2 can be obtained by a 
direct differentiation of dl/dp, (3.9), and then setting P=PCJ since the gap function A(co) vanishes linearly at small 
co by the damping effect as shown in the Appendix E. However, to get the expression which is also applicable to 
the approximate gap function which may be obtained without the damping, we make a partial integration and find 

d2I r»du- dr-3+Zn /SA2\2 pca>-\ r00 r\d2Zn d2Z8] ldZsdA2 l~Znd
2A2' 

= / — R e — — ( ) t a n h — + / du Re co+ 
0c* Jo 4co dcoL co \dpc/ 2 J Jo Lldpc2 dp2\ co dpc dpc 2co dp2. 

\ezn dzs] i-zndA2-

PcCO 

t a n h — 
2 

r00 fldZn dZs) 1-ZndA2-] co 
+ / dwRe co . (3.19) 

Jo I (dp a dpj 2co d/3jcosh2(/3cw/2) 

The right-hand side of (3.19) can be regarded as a sum of the terms which do not vanish when Zn—Zs—1 and 
other correction terms for which the same discussions can be applied as for dl/dpe. The discussions are given in 
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Appendix F where we obtain 

d2I r"du d r l / d A 2 \ 2 PcO>~\ T2 r 1 dA2(iEn) 1 dA2(iEm)-]2 

= _ / — R e — - ) t a n h — £ J(iEn,iEm). (3.20) 
dp2 Jo 2co doLoAdpJ 2 J 2/3c

2m>ol('iEn)
2 dpc (iEm)2 d/3e J 

The quantity d2A2/dpc
2 in (3.19) is cancelled out so that we need only 6A2/dpc to calculate AC. Finally, the expres

sion (3.20) has to be rewritten in terms of dA2/dpc along the real axis. Since A(a>) vanishes at w=0, we do not have 
to worry about the singularities from l/(iEn)

2, etc., and the well-known procedure leads to 

d2I r°°dw d r l / d A 2 \ 2 P<&"\ f r r 1 jco-coJ /dA2(w)\2 

= - / — R e — - 1 tanh— +E / d^ax^^F^,) \ du—In -Re 
dp2 Jo 2co dooLo)\dpc/ 2 J x J L / 0 2w4 lco+coffl \ dpc J 

r TT /dA2(o)+o)q)\
2 r00 f°° dwdca' /dA2(a>)\ / d A 2 ( a / ) \ l 

+ dot Im( ] - / / Re )Re( 
Jo 2(a>+c^)4 \ dpc ) Jo Jo «V2(co+w'+« f l) \ dpe ' \ $Pc J 

as shown in Appendix G. The jump in specific heat is obtained by combining (3.21) with (2.25). 

IV. CONNECTION WITH THE BCS AND SWIHART THEORIES 

It is interesting to note that the present results reduce to the BCS expressions if we put 

Zn=Zs=l} A= a real constant, 0<w<co0 

= 0, o>o<w, 
and a = | . 

(3.21) 

For instance, the function I(fi), (3.7) is easily evaluated in this case and gives 

A 2 \ 1 / 2 1 F _2(2e2+A2) 

E(e^+1) 
/ ( /3)=-—+w 

where 
£=(e2+A2)1/2 

This gives the BCS critical field with (2.19). The entropy difference (2.22) can be rewritten, using the same ap
proximations, as 

AS=xN(0)pi 
,2 dA2 ^m ( A 2 pE pA2 1 1 dA2 

tanh 1 > 
Xe 1 , ae o cosh2(0e/2) dp Jo 12E3 2 4£ 2 cosh2(££/2) J dp 

,co l - c o {3€2 l ^ A 2 - | 

- / dei(E2+e2) / de . (4.2) 
Jo cosh2(/3£/2) Jo 2E2 cosh2(/5E/2) dp A 

The last term in the parentheses can be transformed as 

p pe2 1 dA2 p dA2 e d pE dA2 dA2 r«° A2 pE 
— I de = — / de tanh—= 1 / de— tanh— 

Jo 2E2cosh2(pE/2) dp J0 dp E de 2 dp dp J0 Ez 2 

Substituting (4.3) into (4.2) and making use of the relation 

dA2 r° rtSinh(pE/2) p 1 ~| p de 

(4.3) 

! r«° rtsinh(pE/2) p 1 -| r« 

Jo L 2£3 4£2 cosh2(^E/2)J * J0 dp Jo L 2£3 4£2 cosh2(£E/2)J J0 2 cosh2(pE/2) 

which can be obtained by differentiating the BCS gap equation with respect to P, one finds 

2T2N(0)K r00 e2de r°° de ' ^ 
KN(0)P2 = ~ ' 

3p Jo cosh2(pE/2) 

2TT2N(0)K f™ e2de r00 de f e\ 
AS= KN(0)P2 = yT-^N(0)p ( £ + — ) , 

3p Jo cosh2(pE/2) J0 eP*+l\ E/ 
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where 7 = f7r2Ar(0)/<2. This agrees with BCS again. I t is 
evident that we can get the BCS expression for AC(t) 
from (2.24). 

I t is possible to reduce the expression (2.25) for the 
specific heat jump to Swihart^s formula3 where the gap 
depends on the energy. His result can be rewritten as 

AC 3/3c
4 r00 dA2(co)/dpc 

by virtue of the relation 

A(co,pc) dA(ao,pc) /dA{^pc) 
= / 9 (4>5) 

A(w,0c) dpc I dpc 

where co is a constant energy. To establish this relation, 
we divide the energy-gap equation (B6) by A(co,/3) and 
take the limit P —> j3c and find that the left-hand side 

The first term in the parentheses gives Swihart's result 
(4.4). The relative order of magnitude of the second term 
to the first may be estimated by assuming a constant 
dA2/dpc at 0<co<co0 and zero elsewhere. I t turns out 
to be 

pc dA2 1 / T \ 2 

2w0
2 dpe 2\coopJ 

This is small in the weak coupling limit co0/5»l. There
fore, AC reduces to (4.4). 

of (4.5) satisfies a homogeneous linear equation obtained 
from (B6) by putting A(co') in the square root to be zero 
and replacing Zs by Z„. Then, after differentiating (B6) 
with respect to p, one applies the same discussion and 
finds that the right-hand side of (4.5) satisfies the same 
equation. In this way, the relation (4.5) is derived. 

In Swihart's discussions the energy-gap equation, 

1 r A(a/) 
A(co)=— / doo'V(\oo-oof\) 

2 7 [ c o ' 2 + A V ) ] 1 / 2 

XtanhJ/S[co ' 2+AV)] 1 / 2 (4.6) 

was used. Assuming this equation and putting 
Z» = Z«=1 , A real, and a = J, we shall derive his result 
for AC, (4.4), from the present result (2.25) in the case 
of weak electron-phonon coupling. Only the first term 
in the expression for d2I/dpc

2, (3.21), survives and turns 
out to be 

The new expression (2.25) and (3.21) for AC is differ
ent from the BCS result in three respects. First of all, 
dA2/dpc in the first term of (4.9) increases with energy 
for small energies2,25 thereby increasing | AC| . The low-
energy behavior is essential in this term because of the 
rapidly increasing denominator cosh2(/3cco/2). This differ
ence was already pointed out by Shiftman, Cochran, 
and Garber.11 The second difference is the last term in 

25 P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962). 

d2I /dA2\2\ 1 
- dJ—\ 
Jo \dBeJ 

'<*> p c 1 1 r00 dco d /dA2\2 pcco 

V dp J 12co3 "*"" 2 4o>2 cosh2(pcu/2) J JQ 2 ^ fa\lpj ' ^ ^ Y 
•= / dcol ) \ tanh 

IdA 2 1 
= / dco 

'o 2 dpc cosh2(/3cco —F 
-/2) Jo 

aA2 d l 
tanh-

P(oo2+A2) 1/2 

2 )Pc dp{(oj2+A2)^2 

r do: d /dA2\2 pca> 
~~ f ) t a n h — . (4.7) 

Jo 2oo2dco\dpcJ * 2 

The second term on the right-hand side can be shown to vanish. We find from (4.5) 

<9A2 8 f 1 p{co2+A2)11 

dco \ — tanh 
o dpc dp[(u2+A2)1/2 2 

oc / dco A 2 — 
3=/5c Jo dp{(o02 + A2)1/2 

tanh-
p(co2+A2)l/ 

1 /»O0 /»00 

2 

r d [ A(co) p(oo2+A2)l/2 

doodcol — \ tanh 
Ld/3l(a;2+A2)1/2 

<9A(a>) tanh^cCo/2" 

dpc co 

A(a/) Pcoo' 
V( | co-V |) tanh 

co' 2 

dA(cof) A(«') pcoof r00 dA(co) A(co) pcoo 
= / dco' — — t a n h - / dco—— — — t a n h — = 0 . (4.8) 

'o dpc GO' 2 Jo dpc oo 2 

Combining the relation between AC and d2I/dpc
2, (2.25), with (4.7) and (4.8), one obtains 

A C - -KN(0)pe 

r i r dA2/dpc 

dco-
L2 J0 cosh2(pcoo/2) Jo 2co2dco\dpJ 

* dco d /dA\2 pcoo-
(4.9) 
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(4.9). Since this term does not have such a rapidly in
creasing denominator as the first term, we might expect 
that the main contribution comes from the sharp drop 
in A(co) at the average phonon energy co0 although A(co) 
has many other structures in its co dependence. Thus the 
second term might give rise to a further increase in 
| AC |. The last difference between the present and the 
BCS results is the effects of Z ^ l and complex A. Un
fortunately this is difficult to estimate without the de
tailed solution of the gap equations. 

In this way, we may conclude that the present theory 
is likely to predict a larger jump in specific heat and 
give a better agreement with the experimental results 
for the strong coupling superconductors than the BCS 
results. 

Shiffman, Cochran, and Garber pointed out that 
mercury remains an anomalous case.11 The jump in its 
specific heat can be explained with a constant energy 
gap. We believe this is due to the fact that the typical 
phonon energy co0 in Hg is large in comparison with Pb. 
dA2(oo)/d(3c has the first maximum at co^co0. If /3cco0 is 
large enough, the structure in dA2(co)/d/3c does not give 
any contribution for AC, (4.4), which is presumably the 
main term. /3cco0 is about 7 for Pb, and 22 for Hg.26 

Therefore, the retarded interaction theory might be 
able to account for Hg, too. 

V. CONCLUDING REMARKS 

Expressions for temperature dependence of critical 
field, entropy, specific heat, and its jump at Tc are ob
tained for strong coupling superconductors without 
making a quasiparticle approximation for electron 
motions. The contribution from the ion motions are 
taken into account semiphenomenologically, assuming 
Hc/H0 is the same function h of the reduced temperature 
t= T/Tc for all the isotopes of any one superconductor, 

Hc=H0h(t). (5.1) 

Isotopic mass dependences are assumed as 

Ho^M-% T0*M-«', a ' = §. 

According to the experiment,27 a and a' for Pb are 
observed to be 

a ^ = 0.478±0.014 

and the deviation from the "similarity principle'' for 
the critical field, (5.1), is given by 

1 dh(f) 
< 5 X 1 0 - 4 p e r a m u . (5.2) 

h(0) dM 

If this value were taken literally, the expression for 

26 Tunneling data give w0 — 7.8 meV for Hg. D. M. Ginsberg 
(private communication). 

27 R. W. Shaw, D. E. Mapother, and D. C. Hopkins, Phys. Rev. 
121, 86 (1961). 

A(KM), (2.18), would be modified to 

A(KM)==2AUoh[_ah-afth/-M(dh/dM)']y (5.3) 

and we would have a correction term whose magnitude is 

M(dh/dM)<^h(0), 

since M^207 amu for Pb. This upper limit would give 
rise to 40% correction to the condensation energy at 
zero temperature. However, the similarity principle is 
quite well satisfied experimentally at the high-tempera
ture region, T~ Tc, where we can expect a smaller upper 
limit than (5.2), presumably, by a factor of about 10. 
We hope a further experimental study will give a smaller 
upper limit in the lower temperature region, too. 

In the former sections, the isotope effect of Tc was 
always assumed to be </ = | . Otherwise, an inconsistency 
occurs. Substituting the expression for A(H), (2.18) and 
A(KM), (5.3), [_M(dh/dM) term being neglected] into 
the equation obtained by taking the difference of the 
thermal average of {K), (2.13), between the two phases 
and using A/x=0, one obtains 

N(0)I(p) = AU0h{ ( 4 a - l)h- ( 4 a ' - 2 ) ^ ' } . (5.4) 

dI/d/3 was shown to vanish at/3=j#c at (3.18) irrespective 
of a and a. However, Eq. (5.4) gives 

N(0)(dl/dpe) = (Af/o/^c)(4a ,-2)A ,(l)2 . (5.5) 

Making use of experimental results for Pb 

(dHe/dT)T-Te=-23&A G/°K, 

# 0 - 8 0 0 G, 

one estimates the right-hand side of (5.5), 

N(0)(dI/dpc)=-OA(AUo/pe), 

which is too large to be accounted for by the corrections 
of I (ft). The corrections are supposed to be small by 
the electron-ionic mass ratio (m/M)1/2. 

At present, the origin of this inconsistency is not clear. 
We can only make the following conjecture. The physical 
origin of the nonsimple isotope effect is the existence 
of Coulomb interactions among electrons.25,28 The 
(screened) Coulomb interactions do not decrease rapidly 
for the large energy transfer as is the case for the phonon 
interaction. Accordingly the energy-gap function A(co) 
is not negligibly small even at co>coc. For this reason the 
co integral in the expression for 1(13), (3.6), may not be 
limited to the region | co | <coc and the trick of integrating 
first with respect to the 3-momentum may not work in a 
straightforward way. Since we do not know a method 
to get rid of this difficulty, the present paper is confined 
to the superconductors with c/ = J. 

The expression for the jump in specific heat, (3.21), 
involves the quantity dA2(co)/d/3c. By virtue of the rela-

28 J. C. Swihart, Phys. Rev. 116, 45 (1959); J. W. Garland (pri
vate communication). 
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tion between A(w,ffc) and dA(w,/3c)/dl3c, (4.5), one finds /»«0*«) —P* (/•»«) 

rA(co,^)-js 

LA(WJ8.)J ' 

3A2(co) rA(co^c)-

3/3, "Viifafi.)-

••—AE 
Z^p r e3> 

/H2 pn z2Z2-Ep
2 

z=-iEn 

Therefore, the knowledge for dA2/dftc at only one energy 
value is sufficient to know it all over the energy. This 
will be discussed in a separate paper with the results of 
numerical calculation. 
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APPENDIX A: SHIFT IN CHEMICAL POTENTIAL 
DUE TO THE PHASE TRANSITION 

The purpose of this appendix is to show that the shift 
in chemical potential due to the phase transition A/z is 
quite small in comparison with the energy gap. Self-
consistent discussions will be used, assuming a small 
change in the function Xp. Thus, we assume the modified 
Bloch energy lv does not change by the phase transition. 

The chemical potential is determined in terms of 
average electron density p: 

(N) 2 
•• = - lim Y, GII(P,TI,T2)Z 

Q 0 ^2-n-fO p 

^P(M). (Al) 

Denoting the function p(p) in the superconducting and 
normal phases by the suffices s and n, respectively, and 
putting 

fJin—JUS=A/X, 

one obtains 

P = ps((JLs)
:=pn(^n) = Pn(^s) + ^(dpn/dfXs)-\ , ( A 2 ) 

Aju= D>sGus) —pn{P's)"}/{dpn/dix8). 

Since p» is given by 

pn(»n)=(2in*ixn)m/3Tr2, 

with the effective electron mass m*, dpn/djj,s is roughly 
equal to 

dpn/diis~(ni*/7r2)kF, (A3) 

where IZF is the Fermi momentum. Making use of the 
expression for p(ju), (Al), the numerator in (A2) can 
be rewritten 

= — I m l 
7f0 P L dccA 

o o)2Zp 

o)Zp—ep tanh—! 
2 

= I m l 
7rO P F 

J o 

6?0JA- • tanh— . (A4) 

Here the same arguments are used as those which 
simplified the expression for 1(0) from (2.21) to (3.6) as 
well as a sum rule (Dl) . The main contributions to (A4) 
are expected from \ip\y w<o>c as in the case of 1(0), 
However, the integrand is an odd function with respect 
to lp at that region, thereby cancelling the main con
tributions. In order to estimate the order of magnitude 
of (A4), we take into account the momentum depend
ence of the electron density of states in normal metal, 
putting 

Z = N(0)[~dep~N(0) f(l+—)de9, 
v J kF J \ kF

2J 

where m is the (bare) electron mass. Substituting this 
into (A4), one obtains 

2N(ff)m 
PS(MS)~PW(MS) = I m 

wQkF2 
f* 

X / duA-
' 0 a>2Zp

2-Ep
2 

TTlkF 

tanh— (A5) 
2 

(A6) 

Here, we used the fact that the integral in (A5) has the 
same order of magnitude with 1(0), (3.6). The magni
tude of 1(0) is A2/2, as seen from (4.1) at zero tempera
ture. Substituting (A3) and (A6) into the expression for 
Afi, (A2), one finally obtains 

AM~A2 /4M w . (A7) 

The ratio between A/* and the energy gap 2A turns out 
to be 

A/8 M n ~10- 4 , 

so that A/x can always be neglected. 
One might think that the shift (A7) would be essential 

for the condensation energy since it is multiplied by the 
total electron number in the relation 

A(#>==A<ir)+i\rA/z. (A8) 

However, it is not the case, since NAJJL in (A8) must 
cancel the corresponding term in A(KQ) which we calcu-
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lated assuming AJU=0. Therefore, it is consistent to , .|E ^•*~~-*N >» ^ 7 ^ (p \c ) 
neglect the last term in (A8). Actually, Scalapino29 has ' (p+K,iE ) 
shown that the shift A^ does not give rise to any change 
for thf> rnnHpTiQatinn Pnprav in thp PAQP ni tnp "RP^ F lG* 2' 0 n e o f t h e d i a S r a m s o f t h e electron self-energy part 2 
tor trie condensation energy in the case ot the tf Cb w h i c h a r e negiected in (Bl). The electron momentum p+K in 
model. the intermediate one-electron state is different from the incident 

momentum p, because of the umklapp processes. The intermediate 
APPENDIX B: EQUATIONS FOR ZP} £p, AND $p momentum p+K is usually far from the Fermi surface when p is 

on the surface. 
In order to derive the equations satisfied by Z p , Xp, 

and <t>p,
s we calculate the electron self-energy part 2 , 

(3.1), under the following approximations. First of all, diagrams. Since | />+i£ | is generally far from the Fermi 
the corrections to the electron-phonon vertex part are momentum kp while p^kF, the summation with respect 
down by the electron-ion mass ratio and can be to n in the expression for 7(/3), (2.21), gives rise to a 
neglected.30 Secondly, we might have to take into large energy denominator for such terms in 2 . For some 
account the contribution from such diagrams shown in special p's, we might have \p+K\^kF- However, the 
Fig. 2 where the solid lines correspond to the electron measure of such ^'s is very small since the reciprocal 
Green's functions and the dotted lines mean the inter- lattice vector K can have only discrete values. There-
actions, that is, the phonon Green's function and the fore, the lowest order diagram is sufficient for 2 which 
screened Coulomb interaction. We can discard these gives 

2(p,iEn)=— (1//3Q) Z vq+K,\V-q-K,\TZG(p—q~K,iEn--iEm)TZD\(qJiEm) 
qK\m 

- ( 1 / 0 0 ) 2 Vc{p,q,iEn)rjG{q,iEn-iEm)r3, (Bl) 
qm 

where v is the screened electron-phonon coupling matrix element and Vc the screened Coulomb interactions. 
Substituting Nambu's expressions for 2 and G, (3.1) and (3.2), into (Bl), we obtain 

1 iEmZq(iEm) 
[ l - Z p ( i E n ) ] £ E « = E U(p, q, iEn-iEm)-

00 «m {iEmZq{iEm)}2-Eq\iEm) 

1 €q(iEm) 
Xp(iEn) = E U(p, q, iEn-iEm) — , (B2) 

00 ««• {iEmZq{iEm)¥~E*(iEm) 

1 <j)q(iEm) 
<!>p(iEn)=—£ U(p, q, iEn-iEm)-

where 

00 am {iEmZq(iEm)¥-E*(iEm) 

U(p, q, iEn-iEm) = ll vp-gt\d-.p+qt\Dx(p--q-K, iEn-iEm)+Vc(p, q, iEn-iEm). (B3) 
K\ 

U is a symmetric function with respect to the interchange of p and q as well as n and m. The phonon Green's 
function D\(q,ivn) takes the form 

Dx(q,ivn)-i= - (*> n
2 +^x 2 ) , (B4) 

in terms of the dressed phonon frequency a)q\. Substituting (B3) and (B4) into (B2) one can derive the equations 
for the analytically continued Zp(o>) and <£p(co) by applying Schrieffer, Scalapino, and Wilkins's discussion20'24 

used in the case of zero temperature. The results are given by 

[ 1 - Z . ( « ) > = f do>' Rej /2 " 1 1 / 2 } r J do>qaS(o>q) • Fx(f*JZ(fafi/jaqfi), (B5) 

1 p c f A(co') ] r r 0o/-i 
A(w) = / rfo/Re E /^Qo:x2(co2)-Fx(a)3)Ho(co,co,,co<?,0)-£/tanh— L (B6) 

29 D. J. Scalapino (private communication). 
30 A. B. Migdal, Zh. Eksperim. i^Teor. Fiz. 34, 1438 (1958) [English transl.: Soviet Phys.—JETP 7, 996 (1958)]. 
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where 

E(co,«',wfl,/3) = 

YASUSHI WADA 

1 1 1 

ePa*— 1 e - ^ ' + l J W+<a+(aq+ie w'—co+cog—ieJ 

1 1 

+ 

%o(co,oo',G0q,l3) = 
1 1 

e$o>q—\ ^ ' + 1 

1 

1 

1 1 

-a /+co+a>2+£e — co' — co+a>g 

1 

-ie 

-co'+co+ojg+^e — a/—co+cog—ie 

F\(coq) is a phonon frequency distribution function and a\(ooq) is an interaction strength which are denned by 

1 r , vq+K,\V-q-K,\ m 

(2T)zJq<qm * "" ' - " 2 2««x 2^ | g+ iT | 
ax2(co)Fx(co) f 5(uqx-~u)d*q £ • 

(2TT) 3 A< 
^(2^> |g+Z" | ) , 

gw is the Debye momentum, JZF the Fermi momentum and 6 is the step function which is unity if the condition 
is satisfied and vanishes otherwise. The screened Coulomb interaction is replaced by a pseudopotential U defined 
to include interactions between electrons outside a band of energies |co| <coc. The same discussion is applied for 
AX-p, the difference of Xp between the two phases, and shows AXP is negligible since the integrand in (B2) is essen
tially an odd function of eg, as was the case for A/x, (A4). 

Making use of this fact, we can show that the Xplp term in the expression for /(/?), (3.6), does not give the 
contribution. The term can be rewritten as 

(B7) 
i _ r xph #0 4 Xp 
- Im 2J / dooA- —— tanh—= — ^ A — - — 
7T P J 0 G02Zp

2 — E p
2 2 /3 Pn (iEnZp) 

Denoting the superconducting and normal Xp by Xp
s and Xp

n respectively, we can derive a relation 

Xp»(iEn)ep(iEn) 1 €p(iEn) 
E 
PU (iEnZsp)

2-Ep
2(iEn) (3Q pa (iEnZsp)

2-~Ep
2(iEn) 

U(p, q,iEn — iEm) 

X-
q{iEm) 

•=z-
Xq

s(iEm)eq(iEm) 

(iEmZnq)
2—€q

2(iEm) «»» (iEmZnq)
2— eq

2(iEm) 

where the equation for Xp, (B2), is used. Since xn=x s , this means the quantity (B7) vanishes. 

APPENDIX C: THE ANALYTICITY OF 9A2/d(5c 

dA2(a>) i d^2^) 

d$c Z»2(«) dfie 

The quantity, 

obtained from the definition of A(co), Eq. (3.8), is analytic in the upper half co plane if Zn(o>) does not have any 
zeros there. Suppose co—z0 is such a zero, and calculate the imaginary part of the equation continued analytically 
from the equation for [1—Zn(co)]o>, (B5), (A = 0) at that point. The left-hand side gives Ims0, while the right-hand 
side is proportional to Imso*, including the sign. Therefore, there are no such zeros of Z„(w). 

APPENDIX D: THE DERIVATION OF EQ. (3.14) 

Writing the T* dependence of the Green's function G(p,rhT2) explicitly in terms of the eigenstates | n) and the 
corresponding eigenvalues En of the Hamiltonian K, 

K\n)=E»\n), 
one finds 

Gu(p,a>+iO) = "£un 

\(tn\cPt*\n)\2 \{m\cPt\n)\2l 

nm [Q)-{-En—Em-\-ie a>+Em~- En-\-ie J 
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where 

m 

This gives 

ImGu(p, co-\-iO)dco= —ir. 
-QO 

Substituting the expression for Gu, (3.2), we obtain 

Jo 

Taking the difference of (Dl) between the two phases, integrating with respect to dzp, it is found that 

R e / J l • = 0 , 
Jo L |>2-A2(co)]1 / 2J 

which gives Eq. (3.14). 

APPENDIX E: THE GAP FUNCTION A(w) AT SMALL o> 

From the equation for [l—Zs(co)]co, (B5), it is easily found that 

Re[l-Zs(co)]co = -ate ln|co| +( l -6)co+0(co 3 ) , Imo>Zs(co) = T+0(co2). 

Here a, h, and T are constants and T > 0 , if T>0. These relations give 

1 co 

CoZs(o)) TV 
I m / dco== . (Dl) 

o «2Z.*(w)-JV(a>) 2 

(El) 
Zs(co) ^co+acoln|co|+ir+0(cu2) 

By virtue of the equation satisfied by A(co), (B6), we obtain 

ReZs(co)A(co) = ^+0(co 2 ) , ImZs(w)A(co) = Cw+0(co3), (E2) 

where A and C are constants. Combining (El) and (E2), we find 

co[^+iCco+0(o;2)] Ace 
A(o>) = — « , (E3) 

ir+acoln|co|+5co+0(co2) iT 

indicating the fact that A(co) vanishes linearly with to. The density of states of the quasipartides may be modified 
in the small to region. The size of this modification will depend on the magnitude of the damping rate V as seen 
from (E3). 

APPENDIX F: THE DERIVATION OF EQ. (3.20) 

The transformations of the integration contour as in (3.12) allow us to rewrite (3.19) as 

d2I r«>dco d r l / d A 2 \ 2 /3cco~i 2wi Zn-l/dA2\2 /d2Zn d2Zs\ ldZsdA2 l-Znd
2A2 

• + / - R e - - ( — 1 t a n h — = — E ( — J + ( )*+ 
Jo 2co dcoLcoKdpJ 2 J pcm>oL 4.32 \dpc/ \d(3c

2 d/3c
2/ z d(3c dpc 2z dpt 

(32Zn d2Zs\z
2 2(l-Zn)dA2 ldZndA2 Zn-1 d2A2-\ 

_ , ( F 1 ) 

KdQcdz dt3cdz/l3c f3cz d/3c pe dz d/3c (3C dpcdzAz^iEm 

where (3.12) and (3.18) have been used. Making use of the relations 

/ dcoqa\2(coq)F\(toq) / 
2wi 

E / da>qax2(uq)Fx(o>q) / duty(<a')Z(iEmfi>',<aqfi) = E $(iEn)J(iEm,iEn) , 
P w>0 

f p dfE(iEm,cof,coq,p) 
E / dcoqax

2(coq)Fx(coq) / &>'*(«') 
* •> . / - c o ^ 

2?ri d /* iEmePu* 
= E — D^(z)J(iEm}z)2z~iBn+2Ti E I d*»<fii\2(<»<i)F*M {^(^m—cog)—^(fEro+wfl)} , 

p2 n>odz \ J (e^-1)2 
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E J da>^?(fcq)FxM J &> W ) 

Y A S U S H I W A D A 

dE(s,a/,a>s,0)| 

2wi 

dz 

dJ(iEn,z) 
E ^(i£n) 

w>0 62 z=iE„ 

2wipz: I 
e0Uq 

+2wifi E / dwjDrffaJFxM W(iEm-oq)-xP(iEm+coq)} , 
( W ^ - l ) 2 

where xp is any analytic function on the upper half-plane, we obtain 

Z w - l / d A 2 \ 2 l iri 1 /dA2(iEm)\2 

E ( — J = — E -I J(iEm,iEn), 

[d2Zn d2Zs\ I 

E ( W 
o\a/3c

2 a/3c
2/ U ^ 

/a2z„ d2z, 

wi 1 d2A2(iEn) 
=— E 

2f3cm>o(iEny d/3c
2 

n> 0 

•J(iEn,iEm) 

+— E 
5 1 /dA2(iEm)\2 iri drldA2(z) "I 
- E ) J(iEm,iEn) E — /(*£«,*) 
3™>o(iEw)4 \ d0c / /3c

2m>od*U d£c -!«•<*„ 
n>0 « > 0 

+?ri E / do)^L\2(o)q)Fx((aq) 
x 7 (e^««—1)21 (fJEm—cofl)

a 

iEmef>a* f 1 dA2(iEm-a)q) 1 dA2(i£m+coa) 

1 6ZS dA2 

E 
m>OZ d/3c d/3c 

m>0 

iri 

(iEm+a>q)
2 d/3c 

dA2{iEm) dA2(iEn) 

=iEm 2pc m> 0 (iEmy(iEn)
2 dpc 

w>0 
d& 

•J(iEm,iEn) 

iri 1 dA2(iEm) d 
H E [*A*£»,2) ]*-<#» > 

f3c
2™>o(iEm)2 dpc dz 

n> 0 
Z „ - l d 2 A 2 | « 1 d2A2(iEm) 

E = E J(iEn,iEm), 

»>ol \ 

d2Zn d 2 Z s y 2 2( l-Zn)<9A2 

a&d* dPcdzJpc /3cz d/3c\z==iE 

iri 1 dA2(iEm) 

pc
2m>0(iEm)2 dpc 

iri iEm dA2(iEn) d 
-J(iEm,iEn) E — J(iEn,z) 

n>0 
f3c

2m>Q(iEn)
2 d(3c dz 

n>0 J 
iri E / dcx)qax2(o)q)Fx(cx)\)-

iEmefia* 1 dA2(iEm-uq) 1 dA2(iEm+uq) 

(e^-iy[(iEm~^qy d$c (iEm+a>qy d(3c 

j 1 dZndA2j 

A f3c dz dpj^m 

wi 1 dA2(iEm) d 

™>Oi Pc dz dPe>z-iBm Pc2™>°iEm dpc dZ 
n> 0 

J(iEn,z) 
Tri 1 dA2(iEm) 

^ j(iEn,iEm), 
-ism Pc2™>o(iEmy d(3c 

E -
Zn~\ d2A2 Tri 1 d2A2 

=— E 
™>ol f$c dpcdz) z==iEm pc

2™>oiEmdl3cdz 

J(iEn)iEm). 
z=iEn 

Adding up all of the above equations, one rewrites the right-hand side of (Fl) and gets (3.20). 
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APPENDIX G: THE DERIVATION OF EQ. (3.21) 

Suppose a function \f/(z) is analytic on the upper half z plane and bounded at |z|—>oo. Then the series 
Em> o \p(iEm)J(iEn,iEm) is calculated as follows: 

E WEm)J(iEn,iEm) = E /^Qo:x2(cog)Fx(co,)/ dzrP(z) 
m>o 2iri x J J C1 

x|(-J —)-M— — ) — ! 
= — ; S / do)ga\2(o)q)F\(o)q) I 

2iri x 7 Jo 

1 1 
dwga\2(a)q)F\(a)q) I Jco{^(co)+^(—«)} 

£En+co+a>a — iEn+co+co 

/

o:x2(cog)i
7x(cog) 

&)« ; : W(iEn-a>q)+t(iEn+a>q)} . (Gl) 

The last term in the first integral, which has the factor 1 / ( ^ + 1 ) , is presumably small in comparison with the 
first term, since the contribution to w integral from the region o)> 1/fi is small due to the factor l/(epa+l) and the 
contribution from co<l//3 is also small because of the other factor. We can neglect the last term in (Gl) , too, 
since /3co3> 7 for the typical phonon frequency in Pb. 

With another analytic function <p(z) which vanishes at \z\—><*> as l / | z | Y , Y > 1 , one finds 

E (p{iEn)}p{iEm)J{iEn,iEm) 
m>0 

/32 r r f3z r« r 1 I n 
= E / ^ a x ^ x / dz<p(z) tfmh-~ & J { ^ ( O , ) + ^ ( - « ) } 

ST2 U J a 2 Jo Lz+o)+coq — z-\-o)+coqJ 

p2 r r r r r i ^ i 
= T, da>qax

2Fx \ da'{<pW)+*(-<»')} &>{^(«)+^( -«)} 
87r2 x 7 L7o ./o Lco+co'+w^ to—co'+o^J 

— wr / Jco{^(co)+^(—co)}{<p(co+cog) — <p(—co—we)} . (G2) 

Here small terms are neglected as done for (Gl). If the function\f/(z) becomes small at |s|—>oo as <p(z), the relation 
(G2) takes a simple form 

E <p(iEn)4>(iEm)J(iEn,iEm) = E / dcoqax
2(uq)Fx(coq) J / &o&>' - . <G3) 

m>0 47T2 X 7 J (, J 0 CO+o/+COg 

Applying the relations (G2) and (G3) to the expression for d2I/dl3c
2, (3.20), we easily obtain the result (3.21). 


